
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Recovering Causal Structures from Low-Order Conditional Independencies

Marcel Wienöbst, Maciej Liśkiewicz
Institute of Theoretical Computer Science, University of Lübeck, Germany

{wienoebst, liskiewi}@tcs.uni-luebeck.de

Abstract

One of the common obstacles for learning causal models from
data is that high-order conditional independence (CI) rela-
tionships between random variables are difficult to estimate.
Since CI tests with conditioning sets of low order can be per-
formed accurately even for a small number of observations, a
reasonable approach to determine casual structures is to base
merely on the low-order CIs. Recent research has confirmed
that, e.g. in the case of sparse true causal models, structures
learned even from zero- and first-order conditional indepen-
dencies yield good approximations of the models. However,
a challenging task here is to provide methods that faithfully
explain a given set of low-order CIs. In this paper, we pro-
pose an algorithm which, for a given set of conditional in-
dependencies of order less or equal to k, where k is a small
fixed number, computes a faithful graphical representation of
the given set. Our results complete and generalize the previ-
ous work on learning from pairwise marginal independencies.
Moreover, they enable to improve upon the 0-1 graph model
which, e.g. is heavily used in the estimation of genome net-
works.

1 Introduction

Graphical models, as e.g. directed acyclic graphs (DAGs),
allow an intuitive and mathematically sound approach to an-
alyze complex causal mechanisms (Lauritzen 1996; Pearl
2009). Generally, they encode the causal links between vari-
ables of interests based on conditional independence (CI)
statements between the variables (Spirtes, Glymour, and
Scheines 2000). Hence, the accuracy of estimate of the CIs
plays a key role in learning graphical models and conse-
quently in causal inference from observational data.

CI testing is a challenging task, particularly in the pres-
ence of high-order independencies, when the number of
variables far exceeds the number of observations (Wille and
Bühlmann 2006). In such cases, estimations of CIs are usu-
ally inaccurate, potentially resulting in incorrect links be-
tween variables in the graphical model. On the other hand,
CI tests with conditioning sets of low dimension can be per-
formed accurately even for relatively small observed data
sets. Thus, a natural task is to approximate the true causal

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a b

c

d

a b

c

d

a b

c

d

a b

c

d

a b

c

d

a b

c

d

Figure 1: All 1-faithful DAGs for the vertex set {a, b, c, d}
and the single CI statement (c⊥⊥ d | a).

model using merely low-order CIs. Recent research in infer-
ring genetic networks has confirmed the effectiveness of this
approach when basing only on zero- and first-order indepen-
dencies (Wille et al. 2004; Magwene and Kim 2004).

In this paper, we systematically study the problem to ex-
tract as much “causal knowledge” as possible from CI state-
ments of order at most k, where k ≥ 0 is a (typically small)
integer. More precisely, we investigate the following task:
For a set of variables V and a given set I of CI statements
of the form (a⊥⊥ b |Z), with a, b ∈ V , Z ⊆ V , and |Z| ≤ k,
find all DAGs D which encode up to order k exactly the CIs
in I, i.e., such that for all a, b, Z, with |Z| ≤ k, it is true that
a and b are d-separated by Z in D if and only if (a⊥⊥b |Z) is
in I. We will call such DAGs k-faithful to I (for formal def-
initions, see Section 3). Figure 1 illustrates all DAGs which
are 1-faithful to a single CI statement (c ⊥⊥ d | a) for the
vertex set V = {a, b, c, d}.

We observe that this is a generalization of several prob-
lems already studied in the literature. For the simplest case
k = 0, the CI statements are marginal independencies and
the 0-faithful DAGs are called faithful to pairwise marginal
independencies. The problem of deciding if a 0-faithful
DAG exists for a given set of CIs of order zero, represented
as an undirected graph, has been studied in (Pearl and Wer-
muth 1994; Textor, Idelberger, and Liśkiewicz 2015).

Next, with n denoting the cardinality of V , the problem
for k = n − 2 was first investigated by Verma and Pearl
(1992). They called such k-faithful DAGs just faithful ones
and presented an algorithm which, for a given I, tests for
the existence of a DAG faithful to I and produces a repre-
sentation of all such DAGs encoded in form of a completed
partially directed acyclic graph (CPDAG) (we recall all used
graphical notions in Section 2).

10302

(a)

a b

c

d

u v

(b)

a b

c

d

u v

Figure 2: In (a) the underlying true DAG D is displayed. In
(b) we show the skeleton of the CPDAG computed by the
PC algorithm restricted to CI tests of order zero and one.

Note the important difference between the k-faithful and
faithful DAGs. Even if I consists of CI statements of order
≤ k, these two notions differ considerably. E.g., for the CI
statements I of order zero and one induced by the under-
lying DAG D shown in Fig. 2(a) the only 1-faithful DAG
is D itself, while no faithful DAG to such I exists. This is
because for a 1-faithful DAG, the CIs of order > 1 are irrel-
evant, while a faithful DAG takes that (x ⊥/⊥ y | Z), for all
x, y, and Z, with |Z| > 1.

We also notice that one cannot construct a k-faithful DAG
just using a constraint based structure learning algorithm,
as the SGS or the PC algorithm (Spirtes, Glymour, and
Scheines 2000; Kalisch and Bühlmann 2007), restricting the
CI tests to independencies of order≤ k. For example, for the
underlying true DAG shown in Fig. 2(a) such an approach
returns a structure with the skeleton given in Fig. 2(b). It
is analyzed in detail in Section 4 why the superfluous edge
a − b is included in the result of classical causal structure
learning algorithms and through which rule we are able to
remove it.

Previous Work. Pearl and Wermuth (1994) investigated
the problem whether a set of marginal independencies I
has a causal interpretation – meaning a DAG faithful to I.
Moreover, they proposed an algorithm to construct a faithful
DAG, but in their paper they did not give proofs for their
theorems. Textor, Idelberger, and Liśkiewicz (2015) fur-
ther considered the stated problem, characterizing the DAG-
representable sets by graph theoretical properties of the
marginal independence graphs (these are undirected graphs
with an edge between a and b iff1 a and b are marginally
dependent). Additionally, they proposed an algorithm which
is based on the construction by Pearl and Wermuth (1994).
However, they did not provide the missing proofs.

Other works have considered the more general setting
which includes conditional independencies with a singleton
conditioning set on top of marginal independencies. In this
context, de Campos and Huete (2000) introduced the notion
of a 0-1 graph. This is an undirected graph which contains
an edge a− b iff (a⊥/⊥ b) ∧ [∀c : (a⊥/⊥ b |c)]. In other words,
we obtain the graph by removing all edges between nodes
for which we find an independence of order zero or one.

Wille and Bühlmann (2006) showed that – in the case
of graphical Gaussian models – the 0-1 graphs are good
estimators of sparse graphical models and relevant in bi-
ological applications. In particular, they have been used

1We use iff as shorthand for if and only if.

to model genome networks (De la Fuente et al. 2005;
Magwene and Kim 2004; Wille et al. 2004). Later, Castelo
and Roverato (2006) generalized the 0-1 graph and the co-
variance graphs (Cox and Wermuth 1993) to so called q-
partial graphs.

Our Results. We provide a constructive solution to the
problem of deciding if, for a given set I of CIs of order less
or equal to k, there exists a DAG which is k-faithful to I.
We propose an algorithm called LOCI (Low-Order Causal
Inference) which – in case a k-faithful DAG exists – outputs
all such DAGs encoded in form of a CPDAG. This extends
and generalizes previously known results by Pearl and Wer-
muth (1994) as well as by Textor, Idelberger, and Liśkiewicz
(2015) who provided solutions only for sets of marginal in-
dependencies, i.e. for k = 0. Moreover, the analysis for the
correctness of the construction given in this paper, fills the
gaps in the proofs by Pearl and Wermuth, and by Textor,
Idelberger, and Liśkiewicz.

The proposed approach also improves some other meth-
ods known in the literature to learn DAGs from CIs up to
a fixed order k. In particular, it improves the algorithm by
De Campos and Huete (2000) that presupposes knowledge
of the topological sorting of nodes in the underlying DAG.
In contrast, no such knowledge is assumed in our algorithm.

Structure of the paper. In the following section we intro-
duce all preliminary definitions. Afterwards, in Section 3,
we formally define what faithfulness to a set of CIs means.
In Sections 4 and 5 we derive an algorithm for finding a
compact and faithful representation of a set of low-order in-
dependencies. We experimentally compare this algorithm to
previous approaches in Section 6. Finally, we discuss our
results in Section 7.

2 Preliminaries

We consider directed and partially directed graphs G =
(V,E) with |V | = n. In the latter case, a graph has both
directed a→ b and undirected c−d edges. Two nodes a and
b are called adjacent if there is an edge between them (di-
rected or undirected). The degree of a node a is the number
of nodes adjacent to a. For an edge a→ b we call a the par-
ent of b and b the child of a. A way is a sequence p0, . . . , pt
of nodes so that for all i, with 0 ≤ i < t, there is an edge
connecting pi and pi+1. Such a sequence is called a path if
pi
= pj holds for all i, j, with 0 ≤ i < j ≤ t. A path from
p0 to pt is called causal if every edge on the path is directed
from pi towards pi+1. A node b is called an ancestor of a if
there is a causal path from b to a. A node b is called a de-
scendant of a if there is a causal path from a to b. AnG(a)
is the set of all ancestors of a in graph G, DeG(a) is the set
of all descendants of a in G. We use small letters for nodes
and values, and capital letters for sets and random variables.

Of special importance are directed acyclic graphs (DAGs)
containing only directed edges and no directed cycles, and
partially directed acyclic graphs (PDAGs) that may contain
both directed and undirected edges but no directed cycles.
Every DAG is a PDAG. The skeleton of a PDAG G is the

10303

undirected graph where every edge in G is substituted by an
undirected edge.

Let P be a joint probability distribution over random vari-
ables Xi, with i ∈ V , and X , Y and Z stand for any subsets
of variables. We use the notation (X ⊥⊥ Y |Z)P to state that
X is independent of Y given Z in P . A distribution P and
a DAG D = (V,E) are called compatible if D factorizes P
as

∏
i∈V P (xi |pai) over all realizations xi of Xi and pai of

variables corresponding to the parents of i in D. It is possi-
ble to read CIs over Xi, with i ∈ V , off a compatible DAG
through the notion of d-separation. Recall, a path π is said
to be d-separated (or blocked) by a set of nodes Z iff (1.)
π contains a chain u → v → w or u ← v ← w or a fork
u ← v → v such that the middle node v is in Z, or (2.) π
contains an inverted fork (or collider) u→ v ← w such that
the middle node v is not in Z and such that no descendant of
v is in Z. A set Z is said to d-separate a from b iff Z blocks
every path from a to b. We write (a⊥⊥ b |Z)D when a and b
are d-separated by Z in D. Whenever G and P are compati-
ble, it holds for all a, b ∈ V , and Z ⊆ V , that if (a⊥⊥b |Z)D
then (Xa ⊥⊥Xb | {Xi : i ∈ Z})P .

An inverted fork u → v ← w is called a v-structure if u
and w are not adjacent. A pattern of a DAG D is the PDAG
which has the same skeleton as D and which has an oriented
edge a → b iff there is a vertex c, which is not adjacent to
a, such that c → b is an edge in D, too. Essentially, in the
pattern of D, the only directed edges are the ones which are
part of a v-structure in D.

A special case of PDAGs are the so called CPDAGs (An-
dersson, Madigan, and Perlman 1997) or completed partially
directed graphs. They represent Markov equivalence classes.
If two DAGs are Markov equivalent, it means that every
probability distribution that is compatible with one of the
DAGs is also compatible with the other (Pearl 2009). As
shown by Verma and Pearl (1990) two DAGs are Markov
equivalent iff they have the same skeleton and the same v-
structures.

Given a DAG D = (V,E), the class of Markov equiv-
alent graphs to D, denoted as [D], is defined as [D] =
{D′ | D′ is Markov equivalent to D}. The graph represent-
ing [D] is called a CPDAG and is denoted as D∗ = (V,E∗),
with the set of edges defined as follows: a → b is in E∗ if
a → b belongs to every D′ ∈ [D] and a − b is in E∗ if
there exist D′, D′′ ∈ [D] so that a → b is an edge of D′
and a← b is an edge of D′′. A partially directed graph G is
called a CPDAG if G = D∗ for some DAG D.

Given a partially directed graph G, a DAG D is an exten-
sion of G iff G and D have the same skeleton and if a → b
is in G, then a→ b is in D. An extension is called consistent
if additionally G and D have the same v-structures. Due to
Meek (1995, Theorem 3), we know that when starting with
a pattern G of some DAG D and repeatedly executing the
following three rules until none of them applies, we obtain a
CPDAG D∗ representing the Markov equivalent DAGs:
1. Orient b− c into b→ c if there is a→ b such that a and

c are nonadjacent.
2. Orient a− c into a→ c if there is a chain a→ b→ c.
3. Orient a− b into a→ b if there are two chains a− c→ b

and a− d→ b such that c and d are nonadjacent.

We will call these three rules the Meek rules.
We note that one obtains the CPDAG D∗ by applying the

rules not only when starting with the pattern of a DAG D
but also, more generally, when the initial graph G is any
PDAG whose consistent extensions form a Markov equiva-
lence class [D]. We will use this property in the correctness
proof of the LOCI algorithm (Algorithm 1).

3 Models Faithful to CI Statements

In this section, we give a formal definition for a k-faithful
DAG and – for the sake of completeness – we recall the def-
initions of a faithful and a k-partial graph. Next, we propose
a definition for a compact representation of all k-faithful
DAGs in terms of PDAGs and show that it yields a CPDAG.

Let V represent the set of variables and k ≥ 0 be a fixed
integer. Let IV be a set of CI statements over variables Xi,
with i ∈ V , given as (a⊥⊥ b |Z), with a, b ∈ V and Z ⊆ V .
Analogously, let IkV be a set of CI statements of order ≤ k,
i.e. such that |Z| ≤ k. For example, the set I0V solely con-
tains marginal independencies. For a more consistent nota-
tion we write (a⊥⊥ b |Z)Ik

V
instead of (a⊥⊥ b |Z) ∈ IkV , and

respectively, (a ⊥/⊥ b | Z)Ik
V

for (a ⊥⊥ b | Z)
∈ IkV . We use
an analogous notation for IV . Additionally, in statements
like e.g. (a ⊥⊥ b | {c, d}), we omit the brackets and write
(a⊥⊥ b | c, d).
Definition 1 (Faithful Graph (Verma and Pearl 1990)). For
a set IV of CIs, a DAG D = (V,E) is called faithful to IV if

∀(a, b, Z) [(a⊥⊥ b | Z)IV
⇔ (a⊥⊥ b | Z)D].

Definition 2 (k-Partial Graph (Castelo and Roverato 2006)).
For a set IkV of CIs of order ≤ k, an undirected graph G =
(V,E) is called a k-partial graph with respect to IkV if

(∀a, b, Z, |Z| ≤ k) [(a⊥⊥ b | Z)Ik
V
⇔ (a− b
∈ E)].

We will call k-partial graphs with k = 1 also 0-1 graphs,
as proposed by Wille and Bühlmann (2006) who considered
such structures in the context of graphical Gaussian models.

Definition 3 (k-Faithful Graph). For a set IkV of CIs of order
≤ k, a DAG D = (V,E) is called k-faithful to IkV if

(∀a, b, Z, |Z| ≤ k) [(a⊥⊥ b | Z)Ik
V
⇔ (a⊥⊥ b | Z)D].

Due to Verma and Pearl (1990), we know that, for a
given set IV , all DAGs faithful to IV can be represented
as a CPDAG over V . A representation of a k-partial graph
follows straightforwardly from the definition. On the other
hand, note that it is not obvious how to represent all DAGs
which are k-faithful to IkV , like e.g. those shown in Fig. 1.

Definition 4. A set IkV of CI statements will be termed DAG-
representable if there is a DAG which is k-faithful to it. We
call a DAG D, which is k-faithful to IkV , edge maximal if
there is no k-faithful DAG whose edge set is a superset of
D. Moreover, we denote by F(IkV) the set of all k-faithful
DAGs to IkV .

For example, for I1V = {(c⊥⊥d|a)}with V = {a, b, c, d},
Fig. 1 shows all DAGs in F(IkV).

10304

a b

c

d

a b

c

d

a b

c

d

(a) (b) (c)

Figure 3: For the example from Fig. 1 we show the k-partial
graph (part (a) on the left), the pattern of the edge maximal
DAGs (part (b) in the middle) and the PDAG representing
F(I1V), with I1V = {(c⊥⊥ d | a)} (part (c) on the right).

Below, we define a representation of a set F(IkV) as a
PDAG. Using our definition, the set of k-faithful DAGs from
Fig. 1 is represented by the PDAG shown in part (c) of Fig. 3.

We say that a PDAG G = (V,E) contains a set of
DAGs {Di = (V,Ei) : i = 1, . . . , t} if for every DAG
Di = (V,Ei) it is true that Ei ⊆ E. Here, we assume that
an undirected edge a − b in G is encoded by two directed
edges a → b and b → a. Obviously, a complete undirected
graph over V contains every setF(IkV). From a causal struc-
ture learning perspective, our goal is to extract from IkV as
much causal knowledge as possible. We formalize this goal
as to find the minimal PDAG which contains every DAG k-
faithful to IkV . In this setting, minimality is considered in
regard to the inclusion relation between the sets of edges.

Definition 5. A PDAG G represents the set F(IkV) if G is a
minimal graph that contains every graph in F(IkV).

It is easy to see, that, according to this definition, the
PDAG in part (c) of Fig. 3 represents the set of k-faithful
DAGs from Fig. 1.

We note that a PDAG G representing a set F(IkV) fulfills
the following conditions:
1. There is an edge a − b in G iff DAGs D,D′ ∈ F(IkV)

exist such that there is an edge a → b in D and an edge
a← b in D′.

2. There is an edge a → b in G iff a DAG D ∈ F(IkV)
exists which contains the edge a → b and no DAG in
F(IkV) contains the edge a← b.

3. There is no edge between a and b in G iff no DAG in
F(IkV) contains an edge between a and b.

From this perspective one can already view the representa-
tion G as a generalization of the notion of a CPDAG that
is used to represent Markov equivalent DAGs of the same
skeleton. Note that DAGs inF(IkV) can have different skele-
tons. Interestingly, we prove that the PDAG representing the
set of k-faithful graphs is still a CPDAG.

Proposition 1. For a given set IkV of CIs, the representation
G of all k-faithful DAGs F(IkV) is a CPDAG. Moreover, any
consistent extension of G is a DAG k-faithful to IkV .

In particular, this means that the representation G is itself
a faithful model of all CIs up to order k.

4 Determining the Skeleton

For a given set IkV of conditional independence statements
up to order k, our goal is to find the representation of the set

(a)

a b

c

d

u v

(b)

a b

c

d

u v

Figure 4: Left (a): The 0-1 graph for the CI statements I1V
induced by the underlying DAG D shown in Fig. 2(a). It
contains the edge a− b, as there is no independence of order
zero or one between these nodes. Right (b): The skeleton
of the graph computed by our algorithm (presented in the
next section). Nodes a and b are not incident since they are
incompatible (according to our definition). The justification
is that, as seen in Fig. 2(a), there is an independence of order
two (a⊥⊥ b | c, d).

of k-faithful DAGs F(IkV). By definition, this is the mini-
mal graph which contains every k-faithful DAG. Thus, our
strategy is the following. Starting with the complete graph,
we want to remove all edges which do not belong to any k-
faithful DAG and, vice versa, keep all edges which are in at
least one k-faithful DAG. This is in line with the paradigm
of constraint-based causal structure learning.

In this section, we characterize all pairs of nodes which
are nonadjacent in every k-faithful DAG. These pairs of
nodes are exactly the ones which are nonadjacent in the rep-
resentation as well. This means that, by finding them, we can
construct the skeleton of the representation. We will explore
how edges are oriented in the subsequent section.

One setting in which two nodes have to be nonadjacent
is quite obvious. If we have a statement (a ⊥⊥ b | Z)Ik

V
, it

follows trivially that there cannot be an edge between a and
b in any k-faithful DAG. However, as we will see, though
this condition is necessary, it is not sufficient for the non-
adjacency of vertices in k-faithful DAGs. As the main result
of this section, we provide a property between two nodes
(we call it incompatibility) and using this property we for-
mulate a criterion for non-adjacency which is both necessary
and sufficient (Proposition 2). The incompatibility between
two nodes a and b expresses some higher order conditional
independencies which can be derived from CI statements up
to order k.

Derivation of Higher-Order CI Statements

When having access to all conditional independencies with-
out a restriction on the order, removing edges correspond-
ing to these known CIs is sufficient for learning the skele-
ton of the underlying causal structure. For example, the SGS
and the PC algorithm (Spirtes, Glymour, and Scheines 2000)
work exactly in this fashion. However, only removing these
edges is not sufficient even for obtaining the skeleton of the
representation (or the skeleton of a k-faithful DAG) when
we consider order-bounded sets of independencies. We will
now investigate why this is the case and show how this ob-
stacle can be overcome.

The outlined problem is illustrated in Fig. 4, for the CI
statements of order 0 or 1 induced by the underlying DAG

10305

D shown in Fig. 2(a), i.e. for the set I1V = {(u ⊥⊥ c), (u ⊥⊥
d), (u⊥⊥b), (u⊥⊥v), (a⊥⊥v), (c⊥⊥v), (d⊥⊥v), (c⊥⊥d), (u⊥⊥
c | v), . . . } of all zero- and first-order independencies found
in this DAG. Choosing the value k = 1 allows us a compari-
son with 0-1 graphs, but such an example can be constructed
for all 0 ≤ k < n − 2. In part (a) we show the correspond-
ing 0-1 graph. This graph is constructed using the simple
strategy of removing an edge if a zero- or first-order inde-
pendence is present. We see that the nodes a and b are adja-
cent in this graph because no independence (a ⊥⊥ b | Z) of
order zero or one exists. However, in the underlying DAG
D the nodes a and b are nonadjacent. Moreover, it is im-
possible to find a k-faithful DAG which contains the edge
a → b or a ← b. In fact, D is the only k-faithful DAG. Es-
sentially, this is the case because the edge between a and b
(if present) would need to be in two conflicting v-structures,
namely u → a ← b and a → b ← v, to make sure that u
and b as well as a and v are marginally independent. This
is clearly impossible. From the fact that no k-faithful DAG
contains an edge between a and b, we can infer that there has
to be a higher-order CI between a and b. Here, this higher-
order CI is (a⊥⊥ b | c, d).

It should be noted that de Campos and Huete (2000) al-
ready discovered that it is possible to remove further edges
from 0-1 graphs (they considered a similar example in Fig. 2
of their paper). However, their method for deleting such
edges relied on the topological ordering in the underlying
DAG and they did not classify these edges. Requiring the
topological ordering is a large obstacle for practical applica-
tions. Our proposed methods do not rely on the topological
sorting as we give a simple classification of the edges that
have to be removed from the 0-1 graph in order to obtain the
skeleton of the representation and, by that, the skeleton of a
k-faithful DAG.

We will now formalize the situation just described in the
following definition and thereby introduce the so called in-
compatible nodes:
Definition 6. Let IkV be a set of CIs of order ≤ k. Then
two nodes a and b are called incompatible iff there exist
u, v, S, T such that the following two conditions hold:
1. (u⊥⊥ b | S)Ik

V
∧ (u⊥/⊥ a | S)Ik

V
∧ (a⊥/⊥ b | S)Ik

V
∧ a
∈ S,

2. (v ⊥⊥ a | T)Ik
V
∧ (v ⊥/⊥ b | T)Ik

V
∧ (b⊥/⊥ a | T)Ik

V
∧ b
∈ T.

We can see that the nodes a and b in the example in Fig. 4
are incompatible because (u⊥⊥ b)I1

V
, (u⊥/⊥a)I1

V
, (a⊥/⊥ b)I1

V
,

(v⊥⊥a)I1
V

, and (v⊥/⊥b)I1
V

hold. In this case, S and T are both
the empty set. It follows immediately that a
∈ S and b
∈ T
are satisfied. Moreover, (b⊥/⊥a)I1

V
follows by symmetry from

(a⊥/⊥ b)I1
V

.
We now prove formally that if the nodes a and b are in-

compatible, there cannot be an edge between a and b in any
k-faithful DAG. Firstly, we show the following:
Lemma 1. Let IkV be a set of CIs of order ≤ k. If we have
(u ⊥⊥ b | Z)Ik

V
, (u ⊥/⊥ a | Z)Ik

V
and a
∈ Z, then no DAG

k-faithful to IkV contains the edge a→ b.

Proof. Assume, there is an edge a→ b in a k-faithful DAG
D. In this DAG, (u⊥/⊥ a | Z)kIV

has to hold. This means that

there is a path between u and a which is not blocked by Z.
But as we have the edge a → b in G, there will also be a
path between u and b which is not blocked by Z (note that
a
∈ Z). A contradiction.

We immediately conclude that incompatible nodes cannot
be adjacent in any k-faithful DAG:

Corollary 1. Let IkV be a set of CIs of order ≤ k. If the
nodes a and b are incompatible, they are nonadjacent in ev-
ery DAG k-faithful to IkV .

Due to the conditions stated in the definition of incom-
patible nodes (Definition 6), it follows from Lemma 1 that
neither the edge a → b nor a ← b can be in any k-faithful
DAG.

A Complete Criterion for Adjacency

The following proposition underlines the importance of the
notion of incompatible nodes by showing that making such
nodes nonadjacent in a 0-1 graph is not only necessary, but
also sufficient in order to obtain the skeleton of the represen-
tation:

Proposition 2. In the representation of F(IkV) two nodes a
and b are adjacent if and only if
(i) there is no CI (a⊥⊥ b | Z)Ik

V
for Z ⊆ V , |Z| ≤ k, and

(ii) the nodes a and b are not incompatible.

This result stems from the correctness proof of the LOCI
algorithm presented in the following section (Algorithm 1).
There, we complete the construction of the representation by
showing how edges can be oriented.

5 Determining the Faithful Model

Now we are ready to discuss how to find the representation
which k-faithfully models the CIs given in the set IkV . This
will also enable us to decide if IkV even has a causal expla-
nation. To answer this question, we attempt to construct the
representation and if this fails, conclude that there can be no
k-faithful DAG.

The LOCI (Low-Order Causal Inference) algorithm for
constructing the representation is presented as Algorithm 1.
We note that it works for arbitrary values k, in particular for
k = 0 for which the CI statements represent marginal inde-
pendencies. The algorithm can be divided into three stages.

In the first stage (line 1), the k-partial graph is generated
which can be constructed by removing, from the complete
undirected graph, edges corresponding to a CI in IkV . We re-
mark that, in general, one does not obtain this graph by exe-
cuting e.g. the “skeleton phase” of the PC algorithm (Spirtes,
Glymour, and Scheines 2000) up to order k. Here, only sep-
arating sets formed by the adjacent nodes are considered.
Therefore, some separating sets of order ≤ k can be over-
looked. Instead, it is necessary to consider all possible sepa-
rating sets Z up to order k.

In the second stage (lines 2 to 6), directed edges are re-
moved according to the rule in Lemma 1. Recall that an
undirected edge u − v is represented as a pair u → v and
u ← v. Thus, removing only the edge u → v means the
orientation of u − v into u ← v. Obviously, removing both

10306

input : Vertex set V , DAG-representable set IkV of CIs
with order ≤ k

output: CPDAG G representing F(IkV)
1 Form the graph G on the vertex set V which has an

undirected edge a− b if for every subset Z of V , with
|Z| ≤ k, it is true (a⊥/⊥ b | Z)Ik

V
.

2 foreach CI (a⊥⊥ b | Z) in IkV and every c ∈ V \{a, b}
do

3 if (a⊥/⊥ c | Z)Ik
V

, (c⊥/⊥ b | Z)Ik
V

and c
∈ Z then

4 Remove a← c and c→ b from G.
5 end

6 end
7 repeat the Meek rules until no rule can be applied.
8 1. a b c ⇒ a b c

9 2. a b c ⇒ a b c

10 3. a
c

d
b ⇒ a

c

d
b

11 end

Algorithm 1: The LOCI algorithm computes the represen-
tation G for a DAG-representable set of CIs up to order k.
Note that we represent an undirected edge a − b as a pair
a→ b and a← b.

directed edges denotes the deletion of the edge u − v. The
aim of the second stage is (1) to remove the remaining undi-
rected edges which do not satisfy the criterion in Proposi-
tion 2, i.e. the edges u− v between incompatible nodes, and
(2) to determine all v-structures. We note that in this stage,
the algorithm also orients some further edges, which are not
involved in v-structures.

To prove the correctness, we make use of the fact that we
can always apply Lemma 1 to triples a, b, c (used in lines 2
to 6) and through this delete two directed edges a ← c and
c→ b at the same time. This step ensures that all incompat-
ible nodes are nonadjacent. In particular, nodes a and c are
incompatible iff the edges a ← c and a → c are removed
at the different steps of the iteration corresponding to triples
a, b, c and â, c, a in lines 2 to 6: Indeed, the two conditions
(cf. Definition 6)

1. (a⊥⊥ b |Z)Ik
V
∧ (a⊥/⊥ c |Z)Ik

V
∧ (c⊥/⊥ b |Z)Ik

V
∧ c /∈ Z,

2. (â⊥⊥ c | Ẑ)Ik
V
∧ (â⊥/⊥ a | Ẑ)Ik

V
∧ (a⊥/⊥ c | Ẑ)Ik

V
∧ a /∈ Ẑ

are true iff the algorithm removes a ← c and a → c in
line 4. If, however, only the edge a← c is removed from the
undirected edge a− c, the edge a→ c remains, meaning the
orientation of a− c into a→ c.

Moreover, we show that in stage two all v-structures of
the representation are oriented. Note that, in order to make
sure all v-structures x→ y ← z are correctly oriented, even
if x and z are incompatible, it is necessary to consider all
triples of nodes a, b, c and not only chains a − c − b as in
common causal structure learning algorithms like the PC-
algorithm (Spirtes, Glymour, and Scheines 2000).

Finally, in the third stage (line 7 to 11), the algorithm ori-
ents further undirected edges through the Meek rules. The

graph obtained after completing stage two already charac-
terizes a Markov equivalence class, as the skeleton and the
v-structures are determined. In order to obtain the represen-
tation, we have to maximally extend it into a CPDAG. This
is why we are able to apply the Meek rules.

Before stating the main results, we illustrate how the
LOCI algorithm works using as an example instance the
zero- and first-order independencies I1V = {(c ⊥⊥ d | a)}
over V = {a, b, c, d}, that have been discussed in Fig. 1
and 3. In (a), (b) and (c) of Fig. 3 the graph G is shown after
completing stage one, two, and three, respectively. Thus, in
(a) there is no edge between c and d as we have the indepen-
dence (c ⊥⊥ d | a) in IkV , while all other edges are present.
In (b) we see that the edges c → b and d → b are oriented.
Essentially, there can be no edge c← b (or d← b) as in that
case (c ⊥⊥ d | a)Ik

V
cannot hold without a collider at node

b. In this regard, stage two is similar to the orientation of
v-structures in the SGS or PC algorithm (Spirtes, Glymour,
and Scheines 2000). The difference is, however, as empha-
sized before, that in the LOCI algorithm further nodes can be
separated during this stage. An example for this are the in-
compatible nodes a and b of the example in Fig. 2 and 4. We,
moreover, remark that, while all v-structures are detected,
the result is not always a pattern, as it is possible that even
further edges are already oriented. Finally, in part (c) the re-
sulting graph G is shown. Here, the edge a − b has been
oriented into a → b due to the third Meek rule. As seen in
Fig. 1, there are six DAGs which are k-faithful to I1V . Three
of them contain the edge a→ b and in the other three a and b
are nonadjacent. However, the edge a← b is in no k-faithful
DAG which is why the orientation a→ b is correct.

We now state the main result of this paper that the LOCI
algorithm produces the required representation:
Theorem 1. The graph G resulting from the LOCI algo-
rithm (Algorithm 1) is the representation of the set F(IkV),
if IkV is DAG-representable.

Some ingredients of the proof of this theorem have al-
ready been stated in this and the previous section. The com-
plete proof can be found in the full version of this paper.

The result enables us to decide whether a given set IkV
has a causal explanation. This is possible through the follow-
ing approach: We can apply the LOCI algorithm to IkV and
check whether the resulting graph is a k-faithful CPDAG. If
it is, clearly there is a causal explanation of IkV , namely the
produced graph (Proposition 1). If it is not, then IkV cannot
have such a causal explanation as, if this were the case, G
would be the representation (Theorem 1) and, therefore, as
argued above, a faithful model. Thus, we conclude:
Proposition 3. There exists an algorithm which for a given
set IkV of CIs tests if the set is DAG-representable.

6 Experimental Analysis
The representation G of a set IkV is in itself a very useful
graph as it faithfully models the CIs of order ≤ k. But apart
from this, it can also be used as an approximation of the
true underlying causal structure. It can even be argued that it
is the best approximation obtained through the given condi-
tional independence information. Because of the minimality

10307

DAG Number of edges

n d 0-1 skel. G skel. D

20 2 27.21 25.43 19.81
20 3 57.88 51.07 29.79
20 4 96.57 87.47 40.03
20 5 126.73 119.49 50.21

60 2 77.85 69.69 58.97
60 3 226.03 160.43 88.55
60 4 512.89 346.06 118.29
60 5 820.69 579.67 148.08

100 2 125.87 113.37 99.40
100 3 413.68 266.92 149.42
100 4 1,061.39 598.11 199.34
100 5 1,905.20 1,118.60 248.92

Table 1: We consider random DAGs with n nodes and ex-
pected node degree d. This means each edge is present with
probability d/(n−1). We present the number of edges in the
0-1 graph, the skeleton of representation G and the skeleton
of the true DAG D. All values are the means of 100 inde-
pendent trials.

of the representation, removing a further edge from G would
mean that some DAG k-faithful to IkV is not contained in it
anymore.

Thus, we investigate in this section how well the repre-
sentation G of a set of low-order CIs is able to capture the
underlying true causal structure. We do this experimentally
by generating a sparse DAG which we then try to recover
with the LOCI algorithm. We confine our analysis to the
case k = 1 which allows us a comparison with the 0-1
graph model. For this, we compare the number of adjacen-
cies (meaning the number of edges in the skeleton) in the 0-1
graph, the CPDAG G and the true DAG. This enables us, in
particular, to estimate the influence of removing edges be-
tween incompatible nodes. Additionally, we investigate how
many v-structures from the true DAG can already be found
in the CPDAG G, giving us an indication how well the edge
orientations are captured in the representation.

We begin by explaining how we generated the set of inde-
pendencies I1V . An undirected graph with n nodes is drawn
randomly. More precisely, each edge is present with proba-
bility d/(n−1), meaning every node has expected degree d.
Afterwards, a topological ordering of the nodes is randomly
chosen in order to obtain a DAG D from the generated
graph. From this DAG we can read off all zero- and first-
order independencies through the notion of d-separation and
thereby produce the set I1V needed for the LOCI algorithm.

The representation G can be obtained by performing the
LOCI algorithm on I1V and the 0-1 graph can be easily ob-
tained as well by removing edges which correspond to in-
dependencies in I1V . Through the generation procedure we
also have access to the underlying true DAG D. First, we
look at the number of adjacencies in the different graphs (see
Table 1). The displayed numbers are the means of 100 inde-
pendent trials and we consider graphs with 20, 60 and 100

DAG Number of v-s per node

n d v-s in G v-s in D v-s in both

20 2 1.427 0.561 0.552
20 3 5.276 1.190 1.111
20 4 10.784 2.024 1.649
20 5 13.556 2.938 2.031

60 2 1.445 0.614 0.612
60 3 10.904 1.343 1.317
60 4 42.979 2.369 2.200
60 5 90.279 3.650 3.119

100 2 1.383 0.654 0.653
100 3 12.982 1.441 1.424
100 4 59.859 2.521 2.419
100 5 161.390 3.872 3.504

Table 2: In the same setting as in Table 1 we present the
number of v-structures (v-s, for short) in G, in D and those
in both graphs.

nodes and expected node degree 2, 3, 4 and 5. Clearly, the
numbers are nonincreasing from left to right. To be more
precise, it holds that AD ⊆ AG ⊆ A0-1 where A is the set of
all adjacencies. This is due to the fact that every k-faithful
DAG is contained in G and that G is constructed by remov-
ing edges from the 0-1 graph.

We begin the analysis by exploring how close G is to the
true causal structure. It can be seen that, in particular for
larger graphs, we are only able to reasonably estimate the
underlying structure up to expected degree 3. For example
for n = 100 and d = 4, the representation G contains al-
most three times as many adjacencies as D. For n = 100 and
d = 2, the estimation is very close to the true DAG and even
for d = 3 the ratio between the number of adjacencies in G
and D is quite reasonable, being well below two. Notably,
in the latter setting the improvement over the 0-1 graphs is
significant. Actually, the difference in the number of adja-
cencies is larger between the 0-1 graph and G than between
G and D. More generally, we see that for larger graphs the
gap between the 0-1 graph and G is substantial, meaning
there is a great number of incompatible nodes. This under-
lines the importance of removing edges between such nodes
in order to find a graphical model which is k-faithful to a set
of independencies I1V . We can conclude that it is possible
to estimate the true causal structure reasonably well, given
that it is sparse. Moreover, it is crucial to remove the edges
between incompatible nodes. But, apart from the adjacen-
cies (or in other words the skeleton), the representation also
contains directed edges and, thus, also v-structures. There-
fore, it is interesting to investigate how many v-structures
from the true DAG can already be found in G. These num-
bers are presented in Table 2. Here, we show the number of
v-structures in D, in G and those which are in both D and
G. For better readability, the numbers are normalized by the
number of nodes n. We consider the same setting as above.

We investigate first how many v-structures are in both G
and D compared to the number of v-structures in D. This

10308

shows how many of the v-structures of the true underlying
DAG the LOCI algorithm is able to detect. We can see that
almost all v-structures are found even for larger expected
node degrees 4 or 5. E.g. for n = 100 and d = 5, the
LOCI algorithm discovers 3.504 out of 3.872 v-structures
per node.

While the LOCI algorithm finds most of the v-structures
in D, we can see that there are many more additional v-
structures in the representation G. While this is in reasonable
limits for sparse graphs (for d = 2 we see roughly a dou-
bling of the number of v-structures), the difference is much
more extreme in denser graphs. In particular, for n = 100
and d = 5 there are 161.39 v-structures per node in G and
only 3.872 in D. This is due to the fact that, as we have seen
in Table 1, there are many more edges in G. At first glance,
however, the increase in v-structures is much more extreme
(a factor more than forty) than the increase in edges (a fac-
tor slightly less than five). But recall that these additional
edges have an important property. As we know that G is a k-
faithful CPDAG, both G and D contain the same zero- and
first-order CIs. Therefore, all additional edges in G lead to
no further dependencies of order zero or one. It is reasonable
to assume that these additional edges are, thus, part of a dis-
proportionate number of v-structures as they do not create
new paths and thereby new dependencies.

7 Discussion

This paper has investigated the problems of determining
how, for a given set of CI statements of order up to k, all
DAGs k-faithful to the set can be represented and how such
a representation can be computed. We solve both problems
showing that such faithful DAGs can be represented in a
compact way as a CPDAG G and then proving that the rep-
resentation G can be computed efficiently.

The experimental results show that, for small values of k,
this graphical representation is also useful as a good estima-
tor of the underlying true causal structure in case of sparse
models. It is considerably better than the k-partial graph be-
cause further edges are removed due to the concept of in-
compatible nodes which allows us to infer the existence of
higher-order independencies. An additional advantage over
k-partial graphs is that we also obtain edge orientations and
can, through this, recover a large portion of the v-structures
in the true DAG.

Our experiments are conducted in the oracle model where
we assume all CI statements up to order k are known. This
has the reason that, in this model, we are able to estimate
best how many incompatible edges are removed. In future
work, it would be interesting to analyze how the proposed al-
gorithm performs if one would use statistical tests to find the
independence statements. Another interesting topic for fu-
ture research is to extend our algorithmic technique to com-
pute the k-faithful representation, or a good approximation
of it, by asking conditional independence queries in such a
way that the number of queries is significantly smaller than
the number of all CI statements of order up to k. This would
be interesting both in the oracle model and when using sta-
tistical tests to estimate independencies.

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) grant LI 634/4-2.

References
Andersson, S. A.; Madigan, D.; and Perlman, M. D. 1997.
A characterization of Markov equivalence classes for acyclic
digraphs. The Annals of Statistics 25(2):505–541.
Castelo, R., and Roverato, A. 2006. A robust procedure
for Gaussian graphical model search from microarray data
with p larger than n. Journal of Machine Learning Research
7(Dec):2621–2650.
Cox, D. R., and Wermuth, N. 1993. Linear dependencies
represented by chain graphs. Statistical Science 8(3):204–
283.
De Campos, L. M., and Huete, J. F. 2000. A new approach
for learning belief networks using independence criteria. In-
ternational Journal of Approximate Reasoning 24(1):11–37.
De la Fuente, A.; Bing, N.; Hoeschele, I.; and Mendes, P.
2005. Discovery of meaningful associations in genomic
data using partial correlation coefficients. Bioinformatics
20:3565–74.
Kalisch, M., and Bühlmann, P. 2007. Estimating high-
dimensional directed acyclic graphs with the PC-Algorithm.
Journal of Machine Learning Research 8:613–636.
Lauritzen, S. L. 1996. Graphical models. Clarendon Press.
Magwene, P. M., and Kim, J. 2004. Estimating genomic co-
expression networks using first-order conditional indepen-
dence. Genome biology 5:R100.
Meek, C. 1995. Causal inference and causal explanation
with background knowledge. In Proc. of UAI 1995, 403–
410. MK Publishers Inc.
Pearl, J., and Wermuth, N. 1994. When can association
graphs admit a causal interpretation? In Selecting Models
from Data, 205–214. Springer.
Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
Prediction, and Search. MIT press, 2nd edition.
Textor, J.; Idelberger, A.; and Liśkiewicz, M. 2015. Learn-
ing from pairwise marginal independencies. In Proc. of UAI
2015, 882–891. AUAI Press.
Verma, T., and Pearl, J. 1990. Equivalence and synthesis of
causal models. In Proc. of UAI 1990, 255–270. Elsevier.
Verma, T., and Pearl, J. 1992. An algorithm for deciding if a
set of observed independencies has a causal explanation. In
Proc. of UAI 1992, 323–330. MK Publishers Inc.
Wille, A., and Bühlmann, P. 2006. Low-order conditional
independence graphs for inferring genetic networks. Statis-
tical applications in genetics and molecular biology 5(1).
Wille, A.; Zimmermann, P.; Vranová, E.; Fürholz, A.; Laule,
O.; Bleuler, S.; Hennig, L.; Prelic, A.; von Rohr, P.; Thiele,
L.; Zitzler, E.; Gruissem, W.; and Bühlmann, P. 2004. Sparse
graphical Gaussian modeling of the isoprenoid gene network
in arabidopsis thaliana. Genome biology 5:R92.

10309

